Leadership

Mathematics

Test your understanding of this lesson Composition of a function | Inverse function example problems:-

1)
Let f:R \(\rightarrow\) given by f(x)=4x+3,then \(f^{-1}(x)\) =
  • \(\frac{x-3}{4}\)
  • \(\frac{x+3}{4}\)
  • \(\frac{3-x}{4}\)
  • \(\frac{x-4}{3}\)
2)
Let g:N \(\rightarrow\) R be a function defined as \(g(x)=4x^2+12x+5\),then g:N \(\rightarrow\) range of g is invertible and the inverse of g is
  • \(\frac{3+\sqrt{x-6}}{2}\)
  • \(\frac{-3+\sqrt{x-6}}{2}\)
  • \(\frac{-3+\sqrt{6-x}}{2}\)
  • \(\frac{-3-\sqrt{x-6}}{2}\)
3)
Let f:R \(\rightarrow\) R be defined by \(f(x)=x^3-3\) then \(f^{-1}(5)\) is
  • 1
  • 2
  • 3
  • -3
4)
If the function f:C \(\rightarrow\)C where C is the set of complex number, defined by \(f(x)=x^2+4\) then \(f^{-1}(-5)\) is the set
  • {-3,3i}
  • {-3i,2i}
  • {-i,i}
  • {-3i,3i}
5)
If the function f:R \(\rightarrow\) R be defined by f(x)=\(x^2+4x+5\), then \(f^{-1}(2)\) is the set
  • {-3,3}
  • {-3,-1}
  • {-1,3}
  • {-3,1}
Hand draw

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close