Leadership

Mathematics

Test your understanding of this lesson Composition of functions | Illustration-1:-

1)
Let \(f:A\rightarrow B\) and \(g:B\rightarrow C\) be two functions such that \(gof:A\rightarrow C\) is onto and \(g:B\rightarrow C\) is one-one then \(f:A\rightarrow B\) is
  • one-one
  • onto
  • into
  • many-one
2)
Let \(f(x)=e^{x}\) and \(g(x)=\log_{e}{x}\) where x>0 then
  • fog=gof
  • \(fog\neq\) gof
  • \(fog \subset\) gof
  • \(gof\subset fog\)
3)
If \(f(x)=(a-x^n)^{\frac{1}{n}}\),a>0,n is a natural number then f(f(x))=
  • 1
  • n
  • x
  • nx
4)
If \(\begin{cases}\frac{|x|}{x} & x\neq 0\\0 & x = 0\end{cases}\) and \(g(x)=1+x-[x]\), then for all x,fog(x)=
  • x
  • 1
  • f(x)
  • g(x)
5)
If \(f(x)=1+x^{\frac{1}{3}}\),and \(g(x)=3-x^{\frac{1}{3}}+x\),then g(1)=
  • 3
  • 5
  • 27
  • 4
Hand draw

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close