Leadership

Mathematics

Test your understanding of this lesson Formula for differentiation to integration | on trigonometry:-

1)
\(\int (secx+tanx)^{2}dx=2tanx+\phi(x)+c\)
  • 2secx-x
  • x-2secx
  • 2x+secx
  • x+2secx
2)
A function f(x) is such that, f"(x)=sinx, f'(0)=0 and f(0)=2, then f(x) is equal to
  • x-sinx
  • x-sinx+2
  • x+sinx+2
  • None of these
3)
The value of \(\int \frac{dx}{cos^{2}7x}\) is
  • tan7x+c
  • 7tan7x+c
  • \(\frac{12}{7}tan7x+c\)
  • None of these
4)
\(\int\frac{\text{d}x}{\text{1+sin}x}=tan(\frac{x}{2}+A)+B\)
  • \(A=\frac{\pi}{4}\),B=C
  • A=-\(\frac{\pi}{4}\),B=C
  • A=\(\frac{\pi}{2}\),B=C
  • A=-\(\frac{\pi}{2}\),B=C
5)
\(\int x^{6}sin(5x^{7})dx=\frac{k}{5}cos(5x^{7})(x\neq 0)\), then the value k is
  • k=7
  • \(k=-\frac{1}{7}\)
  • \(k=\frac{1}{7}\)
  • None of these
Hand draw

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close