Leadership

Mathematics

Nine Standard >> Application of Remainder theorem | Part -2

Click the green "Start" button for MCQ.
Leadership

Question:

\(P(x)=2x^{3}+kx^{2}-3x+5\) and \(q(x)=x^{3}+2x^{2}-x+k\) when divided by (x-2) leave remainder \(r_1\) and \(r_2\) respectively. Find k if \(r_1-r_2=0\)


Solution:

x-2 is the divison. Remainder P(2)=\(r_1\)

\(P(2)=2.2^3+k.2^2-3.2+5\)
       =16+4k-6+5
       =4k+15

\(r_1\)=4k+15-----(1)
\(q(x)=x^3+2x^2-x+k\) is divided by x-2
\(q(2)=2^3+2.2^2-2+k\)
       =8+8-2+k=14+k
  \(r_2\)=14+k------(2)
Putting in \(r_1-r_2=0\)
               =>4k+15-14-k=0
               =>3k+1=0
               =>k=-\(\frac{1}{3}\)

Leadership
Hand drawn

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close