Leadership

Mathematics

Ten Standard >> Circumference and area of a circle

Click the green "Start" button for MCQ.
Leadership

Circumference and area of a circle

The circumference of the circle is the distance around the outside of a circle. 
If the radius of the circle is r and diameter is d then,


1) Circumfrence or Perimeter=\(\tt \pi d\)
                                           = \(\tt 2\pi r\) units
2) Circumfrence of a semicircle=\(\tt \frac{1}{2} \times 2\pi r\) 
                                               =\(\tt \pi r\) 
3) Perimeter of a protracter=\(\tt \pi r\)+ \(\tt 2r\)
                                         =\(\tt (\pi+2)r\) 
                                         =\(\tt (\frac{22}{7}+2)r\)
                                         =\(\tt \frac{36}{7}r\)
4) Area of a circle=\(\tt length \times bredth\)
                          =\(\tt \pi r \times r\)
                          =\(\tt \pi r^{2}\) sq unit

5) Area of a semi circle =\(\tt \frac{1}{2}\pi r^{2}\) sq unit

6) area of a ring
   =Area of the bigger circle - Area of the smaller circle
   =\(\tt \pi R^{2}-\pi r^{2}\) sq unit
   =\(\tt \pi (R^{2}-r^{2})\) sq unit
   =\(\tt \pi (R+r)(R-r)\) sq unit


Illustration:

The diameter of the two circles with centrs A and B are 16 cm and 30 cm respectively. If area of another circle with centre C is equal to the sum of areas of these two circles, find the radius, circumference and area of the circle with centre C.

Solution:

Radius of the circle whose centre is A=8 cm
Radius of the circle whose centre is B=15 cm
Let radius of the circle whose centre is C is r cm

According to question
    \(\tt \pi r^{2}=\pi (8)^{2}+\pi (15)^{2}\)
or, \(\tt \pi r^{2}=\pi (8^{2}+15^{2}\)
or, \(\tt r^{2}=(8^{2}+15^{2}\)
or, \(\tt r^{2}=(64+225\)
or, \(\tt r^{2}=289\)
or, \(\tt r^{2}=17^{2}\)
\(\therefore\ r=17\) cm

Circumference=\(\tt 2 \pi r\)
                      =\(\tt 2 \pi .17\) cm
                      =\(\tt 2 \pi .17\) cm
                      =\(\tt 34 \times 3.14\) cm
                      =\(\tt 106.76\) cm

Area of the circle=\(\tt \pi r^{2}\)
                         =\(\tt 3.14 \times 289\) 
                         =\(\tt 907.46\) sq cm    


Illustration 2:

Two coins of diametrs 6 cm and 8 cm respectively are kept one over the other as shown in the figure. Find area of the part of the lower coin which visible from the top.

Solution: 
Area of the ring =\(\tt \pi (R+r)(R-r)\)

Here R is 4 cm & r=3 cm

Area of the visible part of the bigger coin
      =\(\tt \pi (R+r)(R-r)\)
      =\(\tt \frac{22}{7} (4+3)(4-3)\)
      =\(\tt \frac{22}{7} \times 7 \times 1\)
      =\(\tt 22\ cm^{2}\)

Leadership
Hand drawn

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close