Leadership

Mathematics

Eight Standard >> Exponents or power or index | Part -1

Click the green "Start" button for MCQ.
Leadership

Product law of exponents

 We can write 
2×2×22 \times 2 \times 2 =2^{3}\)
2×2×2×22 \times 2 \times 2 \times 2=2^{4}\)
2×2×2......ntimes2 \times 2 \times 2 ......n times=2^{n}\)

Rule 1. If \frac{p}{q} is any rational number then for any positive integer n we have (pq)n=pnqn\left(\frac{p}{q}\right)^{n}=\frac{p^{n}}{q^{n}}

Ex:  (23)4=2434=1681\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{16}{81}
(45)3=(4)×(4)×(4)5×5×5=64125\left(-\frac{4}{5}\right)^{3}=\frac{(-4) \times (-4) \times (-4)}{5 \times 5 \times 5}=\frac{-64}{125}

Rule 2. For a rational number pq\frac{p}{q}, where p0, q0,p \neq 0,\ q \neq 0, we have (pq)1=qp\left(\frac{p}{q}\right)^{-1}=\frac{q}{p} [it is reciprocal or inverse of pq\frac{p}{q}]

 (pq)n=(qp)n\left(\frac{p}{q}\right)^{-n}=\left(\frac{q}{p}\right)^{n}

Ex: (23)3=(32)3\left(-\frac{2}{3}\right)^{-3}=\left(-\frac{3}{2}\right)^{3}
      (25)1=(52)\left(\frac{2}{5}\right)^{-1}=\left(\frac{5}{2}\right) 

Leadership
Hand drawn

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close