Law 1. \(a^{m}\times a^{n}=a^{m+n}\)
\(3^{2}\times 3^{3}=3^{3+2}=3^{5}\)
Law 2. \(\frac{a^{m}}{a^{n}}=a^{m-n}\)
\(\frac{3^{3}}{3^{2}}=3^{3-2}=3^{1}\)
Law 3. \(\frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}}\) (n>m)
\(\frac{3^{3}}{3^{2}}=3^{3-2}=3^{1}\)
Law 4. \((a^{m})^{n}=a^{mn}\)
\((2^{3})^{2}=2^{3 \times 2}=2^{6}=64\)
Law 5. i) \(a^{m}=\frac{1}{a^{m}}\)
Ex: \(2^{-3}=\frac{1}{2^{3}}\)
ii) \(\frac{1}{a^{-m}}=a^{m}\)
Ex: \(\frac{1}{5^{-2}}=5^{-2}\)
Law 6. \(a^{0}=1\)
\(a^{o}=a^{m-m}\)
Law 7. \((ab)^{m}=a^{m}.b^{n}\)
\left(\frac{a}{b}\right)^{m}=\frac{a^{n}}{b^{n}}
Law 8. If \(x^{m}=x^{n}\)
\(\Rightarrow\ m=n\) [Provided \(x>0,\ x\neq 1\)]
Q. \(3^{2x}.3^{3}=1\). Find the value of x.
Solution:
\(3^{2x}.3^{3}=1\)
\(\Rightarrow\ 3^{2x+3}=3^{0}\)
\(\Rightarrow\ 2x+3=0\)
\(\Rightarrow\ 2x=-3\)
\(\therefore\ x=-\frac{3}{2}\)