Leadership

Mathematics

Twelve Standard >> Formula for differentiation to integration | on inverse trigonometry

Click the green "Start" button for MCQ.
Leadership

Formula for differentiation to integration on inverse trigonometry.

 


Formula for differentiation to integration on integration


From differentiation we know that

\(\frac{d}{dx}(\sin^{-1}x+c)\)=\(\frac{d}{dx}(\sin^{-1}x)+\frac{d}{dx}(c)\)
                         =\(\frac{1}{\sqrt{1-x^{2}}}+0\)

Now, taking integration sign in both sides we have

\(\int_{}^{} \frac{dx}{\sqrt{1-x^{2}}}\)=\(\int_{}^{}d(\sin^{-1}x+c)\)
\(\Rightarrow\) \(\frac{dx}{\sqrt{1-x^{2}}}=\sin^{-1}x+c_1\)
\(\frac{d}{dx}(\cos^{-1}x+c)\)=\(\frac{d}{dx}(\cos^{-1}x+c)+0\)
                     =-\(\frac{1}{\sqrt{1-x^{2}}}\)

\(\Rightarrow\) \(\int_{}^{}\frac{dx}{\sqrt{1-x^{2}}}\)=\(\int_{}^{}d(\cos^{-1}x+c)\)
\(\Rightarrow\) \(\int_{}^{}\frac{dx}{\sqrt{1-x^{2}}}\)=\(\cos^{-1}x+c)\)
\(\frac{d}{dx}(\tan^{-1}x+c)\)=\(\frac{d}{dx}(\tan^{-1}x)+0\)
                         =\(\frac{1}{1+x^{2}}\)

 

\(\int_{}^{} \frac{dx}{\sqrt{1-x^{2}}}\)=\(\int_{}^{}d(\sin^{-1}x+c)\)
\(\int_{}^{} \frac{dx}{\sqrt{1-x^{2}}}\)=\(\int_{}^{}d(\sin^{-1}x+c)\)
\(\Rightarrow\) \(\frac{dx}{\sqrt{1-x^{2}}}=\sin^{-1}x+c\)
\(\frac{d}{dx}(\cos^{-1}x+c)\)=\(\frac{d}{dx}(\cos^{-1}x+c)+0\)
                     =\(\frac{1}{sqrt{1-x^{2}}}\)


\(\Rightarrow\) \(\int_{}^{}\frac{dx}{\sqrt{1-x^{2}}}\)=\(\int_{}^{}d(\cos^{-1}x+c)\)
\(\Rightarrow\) \(\int_{}^{}\frac{dx}{\sqrt{1-x^{2}}}\)=\(\cos^{-1}x+c)\)
\(\frac{d}{dx}(\tan^{-1}x+c)\)=\(\frac{d}{dx}(\tan^{-1}x)+0\)
                         =\(\frac{1}{1+x^{2}}\)


\(\Rightarrow\) \(\int_{}^{}\frac{dx}{1+x^{2}}\)=\(\int_{}^{}d(\tan^{-1}x+c)\)
\(\Rightarrow\) \(\int_{}^{}\frac{dx}{1+x^{2}}\)=\(\tan^{-1}x+c)\)


\(\frac{d}{dx}(\cot^{-1}x+c)\)=\(\frac{d}{dx}(\cot^{-1}x)+\frac{d}{dx}(c)\)
                         =-\(\frac{1}{1+x^{2}}+0\)

or, \(\int_{}^{} -\frac{dx}{1+x^{2}}\)=\(\cot^{-1}x+c)\)


\(\frac{d}{dx}(\sec^{-1}x+c)\)=\(\frac{d}{dx}(\sec^{-1}x)+0\)
                         =-\(\frac{1}{x{sqrt{x^{2}-1}}+0\)

\(\Rightarrow\) \(\int_{}^{} \frac{dx}{\sqrt{x{sqrt{x^{2}-1}}\)=\(\int_{}^{}d(\sec^{-1}x+c)\)
\(\Rightarrow\) \(\int_{}^{} \frac{dx}{\sqrt{x{sqrt{x^{2}-1}}\)=\(\sec^{-1}x+c)\)   


\(\frac{d}{dx}(\cosec^{-1}x+c)\)=\(\frac{d}{dx}(\cosec^{-1}x)+\frac{d}{dx}(c)\)
                         =-\(\frac{1}{x{sqrt{x^{2}-1}}+0\)  
\(\Rightarrow\) \(\int_{}^{} \frac{dx}{\sqrt{x{sqrt{x^{2}-1}}\)=\(\int_{}^{}d(\cosec^{-1}x+c)\) 
                        =\(\cosec^{-1}x+c\) 

 


\(\Rightarrow\) \(\int_{}^{} cosx=sinx+c\)
\(\frac{d}{dx}(-cosx+c)\)=\(\frac{d}{dx}(-cosx)+\frac{d}{dx}(c)\)
                     =\(sinx+0\)
                     =\(sinx\)
\(\Rightarrow\) \(\int_{}^{} sinxdx=\int_{}^{} d(-cosx+c)\)
\(\Rightarrow\) \(\int_{}^{} sinxdx=-cosx+c\)

Now, we derive formulla tanx

\(\frac{d}{dx}(tanx+c)\)=\(\frac{d}{dx}(tanx)+\frac{d}{dx}(c)\)
                         =\(\sec^{2}x+0\)
                         =\(\sec^{2}x\)

Now, taking integration sign in both sides we have

\(\int_{}^{} \sec^{2}xdx=\int_{}^{}d(tanx+c)\)
\(\Rightarrow\) \(\int_{}^{} \sec^{2}xdx=tanx+c\)

\(\frac{d}{dx}(-cotx+c)\)=-\(\frac{d}{dx}(cotx)-\frac{d}{dx}(c)\)
                     =\(\cosec^{2}x\)

\(\Rightarrow\) \(\int_{}^{}\cosec^{2}x dx=\int_{}^{}d(-cotx+c)\)
\(\Rightarrow\) \(\int_{}^{}\cosec^{2}x dx=cotx+c\)


Now, we derive formulla tanx

\(\frac{d}{dx}(secx+c)\)=\(\frac{d}{dx}(secx)+\frac{d}{dx}(c)\)
                         =\(secxtanx+0\)
                         =\(secxtanx\)      

Now, taking integration sign in both sides we have  

\(\Rightarrow\) \(\int_{}^{}secxtanx dx=\int_{}^{}d(secx+c)\)
\(\Rightarrow\) \(\int_{}^{}secxtanx d=secx+c\)

Again,
\(\frac{d}{dx}(-cosecx+c)\)=\(\frac{d}{dx}(cosecx)+\frac{d}{dx}(c)\)
                         =\(cosecx cotx+0\)
                         =\(cosecx cotx\)

Now, taking integration sign in both sides we have

\(\Rightarrow\) \(\int_{}^{}cosecx cotx dx=\int_{}^{}d(-cosecx+c)\)
\(\Rightarrow\) \(\int_{}^{}cosecx cotx dx=cosecx+c\)

Below, you will find fundamental integral formulas on trigonometry:

1) \( \frac{d}{dx}(sinx+c)=cosx\) \(\Rightarrow\) \(\int_{}^{}cosxdx=sinx+c\)
2) \(\frac{d}{dx}(cosx+c)=sinx\) \(\Rightarrow\) \(\int_{}^{}sinxdx=-cosx+c\)
3) \(\frac{d}{dx}(tanx+c)=\sec^{2}x\) \(\Rightarrow\) \(\int_{}^{}sec^{2}xdx=tanx+c\)
4) \(\frac{d}{dx}(-cotx+c)=\cosec^{2}x\) \(\Rightarrow\) \(\int_{}^{}\cosec^{2}xdx=-cotx+c\)
5) \(\frac{d}{dx}(secx+c)=secxtanx\) \(\Rightarrow\) \(\int_{}^{}secxtanxdx=secx+c\)
6) \(\frac{d}{dx}(-cosecx+c)=cosecx.cotx\) \(\Rightarrow\) \(\int_{}^{}cosecxcotxdx=-cosecx+c\)


 

Leadership
Hand drawn

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close