Given polynomial: f(x) = ax⁴ - 4x³ + 4x - 1 Two given zeroes: 2 + √3 and 2 - √3 Step 1: Form a quadratic factor from the conjugate roots (x - (2 + √3))(x - (2 - √3)) = [(x - 2) - √3][(x - 2) + √3] = (x - 2)² - (√3)² = x² - 4x + 1 So, (x² - 4x + 1) is a factor of f(x) Assume a = 1: f(x) = x⁴ - 4x³ + 4x - 1 Step 2: Perform polynomial division: Perform the division of the polynomial (x⁴ - 4x³ + 0x² + 4x - 1) by the quadratic expression (x² - 4x + 1). Step 3: Long Division 1) x⁴ ÷ x² = x² Multiply x² by the divisor (x² - 4x + 1), resulting in x⁴ - 4x³ + x². Subtract: (x⁴ - 4x³ + 0x²) - (x⁴ - 4x³ + x²) = -x² 2) Bring down 4x: -x² + 4x Divide: -x² ÷ x² = -1 Multiply: -1(x² - 4x + 1) = -x² + 4x - 1 Subtract: (-x² + 4x - 1) - (-x² + 4x - 1) = 0 No remainder ⇒ division is exact So, f(x) = (x² - 4x + 1)(x² - 1) Step 4: Factor further: x² - 1 = (x - 1)(x + 1) Final factorization: f(x) = (x - (2 + √3))(x - (2 - √3))(x - 1)(x + 1) Other two zeroes are: x = 1 and x = -1