Given: g(x) = x³ + 2x² + a The polynomial P(x) is given by: x⁵ - x⁴ - 4x³ + 3x² + 3x - b. Assume that all the zeroes of g(x) are also zeroes of P(x). Assume: P(x) = g(x) × Q(x) = (x³ + 2x² + a)(x² + px + q) Now expand: (x³ + 2x² + a)(x² + px + q) = x³(x² + px + q) + 2x²(x² + px + q) + a(x² + px + q) = x⁵ + px⁴ + qx³ + 2x⁴ + 2px³ + 2qx² + ax² + apx + aq Combine like terms: = x⁵ + (p + 2)x⁴ + (q + 2p)x³ + (2q + a)x² + apx + aq Compare with: P(x) = x⁵ - x⁴ - 4x³ + 3x² + 3x - b Matching coefficients: 1. p + 2 = -1 → p = -3 2. q + 2p = -4 → q + 2(-3) = -4 → q = 2 3. 2q + a = 3 → 2(2) + a = 3 → a = -1 4. ap = 3 → (-1)(-3) = 3 → OK 5. aq = -b → (-1)(2) = -b → b = 2 Final Answer: a = -1 b = 2