Leadership

How to find the value of an expression using zeroes of a polynomial

Ten Standard >> How to find the value of an expression using zeroes of a polynomial

 
Leadership

 

Expressions in Terms of a, b, and c for Roots of a Quadratic Polynomial

 

Given a quadratic polynomial: ax² + bx + c, where a ≠ 0

Assume that α and β are the roots of the given quadratic polynomial.

Known identities:
α + β = -b/a
αβ = c/a

i) α² + β²
= (α + β)² - 2αβ
= (-b/a)² - 2(c/a)
= b²/a² - 2c/a

ii) α² + β² + αβ
= (α² + β²) + αβ
= (b²/a² - 2c/a) + c/a
= b²/a² - c/a

iii) α² + β² - 3αβ
= (α² + β²) - 3αβ
= (b²/a² - 2c/a) - 3c/a
= b²/a² - 5c/a

iv) α³ + β³
= (α + β)³ - 3αβ(α + β)
= (-b/a)³ - 3(c/a)(-b/a)
= -b³/a³ + 3bc/a²

v) α²/β + β²/α
= (α³ + β³) / αβ
= [-b³/a³ + 3bc/a²] / (c/a)
= (-b³/a²c) + (3b/a)

vi) α/β + β/α
= (α² + β²) / αβ
= (b²/a² - 2c/a) / (c/a)
= [b²/(a²) - 2c/a] × (a/c)
= b²/(ac) - 2a/c

vii) √(α/β) + √(β/α)
This simplifies to: (α + β) / √(αβ), only if α, β > 0
= (-b/a) / √(c/a), only defined under positive root constraints
Otherwise, this remains an unsimplified symbolic expression.

  
Leadership
Hand drawn

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close