Given a quadratic polynomial: ax² + bx + c, where a ≠ 0 Assume that α and β are the roots of the given quadratic polynomial. Known identities: α + β = -b/a αβ = c/a i) α² + β² = (α + β)² - 2αβ = (-b/a)² - 2(c/a) = b²/a² - 2c/a ii) α² + β² + αβ = (α² + β²) + αβ = (b²/a² - 2c/a) + c/a = b²/a² - c/a iii) α² + β² - 3αβ = (α² + β²) - 3αβ = (b²/a² - 2c/a) - 3c/a = b²/a² - 5c/a iv) α³ + β³ = (α + β)³ - 3αβ(α + β) = (-b/a)³ - 3(c/a)(-b/a) = -b³/a³ + 3bc/a² v) α²/β + β²/α = (α³ + β³) / αβ = [-b³/a³ + 3bc/a²] / (c/a) = (-b³/a²c) + (3b/a) vi) α/β + β/α = (α² + β²) / αβ = (b²/a² - 2c/a) / (c/a) = [b²/(a²) - 2c/a] × (a/c) = b²/(ac) - 2a/c vii) √(α/β) + √(β/α) This simplifies to: (α + β) / √(αβ), only if α, β > 0 = (-b/a) / √(c/a), only defined under positive root constraints Otherwise, this remains an unsimplified symbolic expression.