2+5x ≠ 7x
[because they are not like turms]
\(2x+5x=(2+5)x=7x\)
[because they are like turms]
Ex 1: Add these numbers 3xy, -5xy, 7yx
Sum=\(3xy-5xy+7yx\)
=\((3-5+7)xy\)
=\(5xy\)
Ex 2: Sum of 7x+3y, 8x, 3x-5y
The sum=7x+3y+8x+3x-5y
=(7+8+3)x+(3-5)y
=18x - 2y Ans.
Ex 3: \(5x^{2} -\frac{1}{3}x+\frac{5}{2}\) and \(2x^{2} -\frac{2}{3}x+\frac{3}{2}\)
Solution:
The sum=\(5x^{2} -\frac{1}{3}x+\frac{5}{2}+2x^{2} -\frac{2}{3}x+\frac{3}{2}\)
=\( (5+2)x^{2}+( -\frac{1}{3}-\frac{2}{3})x+\frac{5}{2}+\frac{3}{2}\)
=\( 7x^{2}+(\frac{-1-2}{3})x+\frac{5+3}{2}\)
=\( 7x^{2}-(\frac{3}{3})x+\frac{8}{2}\)
=\( 7x^{2}-x+4\) Ans.
Subtract: In order to subtract change the sign of algebric expression which is to be substracted and then added.
Ex 1: Subtract a-b from a+b
Solution:
Difference=(a+b)-(a-b)
=a+b-a+b
=2b Ans.
Ex 2: Subtract \(5a^{2}-2ab+b^{2}\) from \(3a^{2}-b^{2}\)
Solution:
Difference=\(3a^{2}-b^{2}\)-\(5a^{2}-2ab+b^{2}\)
=\(3a^{2}-b^{2}-5a^{2}+2ab-b^{2}\)
=\((3-5)a^{2}+(-1-1)b^{2}+2ab\)
=\(-2a^{2}-2b^{2}+2ab\) Ans.