Solving a Pair of Linear Equations Using Cross Multiplication
Given:
1) ax + by = a − b
2) bx − ay = a + b
Step 1: Convert to Standard Form
Move all terms to one side to express both equations in standard form:
First equation in standard form: ax + by - a + b = 0
Second equation in standard form: bx − ay − a − b = 0
From this, we identify:
- a₁ = a, b₁ = b, c₁ = b − a
- a₂ = b, b₂ = −a, c₂ = −a − b
Step 2: Apply Cross Multiplication
By applying the cross multiplication method:
x / (b₁·c₂ − b₂·c₁) = y / (c₁·a₂ − c₂·a₁) = 1 / (a₁·b₂ − a₂·b₁)
Step 3: Substitute the Coefficients
- x numerator: b(−a − b) − (−a)(b − a) = −ab − b² + ab − a² = −b² − a²
- Numerator for y: Multiply (b − a) by b, then subtract the product of (−a − b) and a:
(b − a) × b − (−a − b) × a = b² − ab + a² + ab = a² + b²
- Denominator: Multiply a with −a and subtract the product of b and b:
a × (−a) − b² = −a² − b²
Step 4: Final Results
Now substitute into the formula:
x = (−b² − a²) / (−a² − b²) = 1
y = (a² + b²) / (−a² − b²) = −1
Final Answer:
x = 1, y = −1